Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 90(2): 992-1008, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26537674

RESUMO

UNLABELLED: Hepatitis C virus (HCV) productively infects hepatocytes. Virion surface glycoproteins E1 and E2 play a major role in this restricted cell tropism by mediating virus entry into particular cell types. However, several pieces of evidence have suggested the ability of patient-derived HCV particles to infect peripheral blood mononuclear cells. The viral determinants and mechanisms mediating such events remain poorly understood. Here, we aimed at isolating viral determinants of HCV entry into B lymphocytes. For this purpose, we constructed a library of full E1E2 sequences isolated from serum and B lymphocytes of four chronically infected patients. We observed a strong phylogenetic compartmentalization of E1E2 sequences isolated from B lymphocytes in one patient, indicating that E1E2 glycoproteins can represent important mediators of the strong segregation of two specialized populations in some patients. Most of the E1E2 envelope glycoproteins were functional and allowed transduction of hepatocyte cell lines using HCV-derived pseudoparticles. Strikingly, introduction of envelope glycoproteins isolated from B lymphocytes into the HCV JFH-1 replicating virus switched the entry tropism of this nonlymphotropic virus from hepatotropism to lymphotropism. Significant detection of viral RNA and viral proteins within B cells was restricted to infections with JFH-1 harboring E1E2 from lymphocytes and depended on an endocytic, pH-dependent entry pathway. Here, we achieved for the first time the isolation of HCV viral proteins carrying entry-related lymphotropism determinants. The identification of genetic determinants within E1E2 represents a first step for a better understanding of the complex relationship between HCV infection, viral persistence, and extrahepatic disorders. IMPORTANCE: Hepatitis C virus (HCV) mainly replicates within the liver. However, it has been shown that patient-derived HCV particles can slightly infect lymphocytes in vitro and in vivo, highlighting the existence of lymphotropism determinants within HCV viral proteins. We isolated HCV envelope glycoproteins from patient B lymphocytes that conferred to a nonlymphotropic HCV the ability to enter B cells, thus providing a platform for characterization of HCV entry into lymphocytes. This unusual tropism was accompanied by a loss of entry function into hepatocytes, suggesting that HCV lymphotropic variants likely constitute a distinct but parallel source for viral persistence and immune escape within chronically infected patients. Moreover, the level of genetic divergence of B-cell-derived envelopes correlated with their degree of lymphotropism, underlining a long-term specialization of some viral populations for B-lymphocytes. Consequently, the clearance of both hepatotropic and nonhepatotropic HCV populations may be important for effective treatment of chronically infected patients.


Assuntos
Linfócitos B/virologia , Hepacivirus/fisiologia , Hepatite C Crônica/virologia , Proteínas do Envelope Viral/metabolismo , Tropismo Viral , Internalização do Vírus , Linhagem Celular , Hepacivirus/isolamento & purificação , Hepatócitos/virologia , Humanos , Transdução Genética
2.
AIDS ; 29(9): 1025-33, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26125137

RESUMO

BACKGROUND AND AIMS: Chronic hepatitis C virus (HCV) infection causes severe liver disease in HIV-infected patients and liver transplant recipients. The impact of serum and immunoglobulin on viral entry was analysed in these patients. METHOD: Sera from 60 anti-HCV positive patients, including 30 who were also anti-HIV positive, were tested with HCVpp from different genotypes (1a, 1b, 3 and 4) and with HCVcc (H77/JFH1). Seventeen HIV-seropositive and 13 HIV-seronegative patients with decompensated liver disease were studied before and after liver transplant. RESULTS: Serum neutralization was markedly lower after liver transplant and in HIV patients than in mono-infected immune-competent individuals. This effect was due to low antibody-mediated neutralization. In HIV patients, low neutralization was correlated with low lymphocyte T CD4 cell counts and the severity of liver disease. To characterize neutralization, we tested HCVpp lacking hypervariable region (HVR1) and SR-BI receptor cholesterol transfer inhibition by BLT-4. These experiments showed that neutralization was strongly dependent on the HVR1 and the SR-BI receptor. HVR1 sequences showed that selective pressures were low in immune-compromised patients and highly correlated to HCV neutralization after liver transplant. Neutralization experiments were reproduced with HCV strain JFH1. CONCLUSION: Serum neutralization in HIV-coinfected patients and HCV-infected liver transplant recipients is poor enhancing HCV entry through HVR1/SR-BI interplay. This may contribute to the severity of hepatitis C in these settings.


Assuntos
Anticorpos Neutralizantes/sangue , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/sangue , Hepatite C Crônica/imunologia , Hepatite C Crônica/patologia , Hospedeiro Imunocomprometido , Transplante de Fígado , Adulto , Idoso , Feminino , Infecções por HIV/complicações , Infecções por HIV/imunologia , Hepacivirus/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Estudos Retrospectivos , Internalização do Vírus
3.
Hepatology ; 59(3): 776-88, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24038151

RESUMO

UNLABELLED: Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 are important mediators for productive cell entry. However, knowledge about their structure, intra- or intermolecular dialogs, and conformational changes is scarce, limiting the design of therapeutic strategies targeting E1E2. Here we sought to investigate how certain domains of E1 and E2 have coevolved to optimize their interactions to promote efficient HCV entry. For this purpose we generated chimeric E1E2 heterodimers derived from two HCV 1a strains to identify and characterize crosstalk between their domains. We found an E1E2 combination that drastically impaired the infectivity of cell culture-derived HCV particles, whereas the reciprocal E1E2 combination led to increased infectivity. Using HCV pseudoparticle assays, we confirmed the opposing entry phenotypes of these heterodimers. By mutagenesis analysis, we identified a particular crosstalk between three amino acids of E1 and the domain III of E2. Its modulation leads to either a full restoration of the functionality of the suboptimal heterodimer or a destabilization of the functional heterodimer. Interestingly, we found that this crosstalk modulates E1E2 binding to HCV entry receptors SR-BI and CD81. In addition, we found for the first time that E1E2 complexes can interact with the first extracellular loop of Claudin-1, whereas soluble E2 did not. These results highlight the critical role of E1 in the modulation of HCV binding to receptors. Finally, we demonstrated that this crosstalk is involved in membrane fusion. CONCLUSIONS: These results reveal a multifunctional and crucial interaction between E1 and E2 for HCV entry into cells. Our study highlights the role of E1 as a modulator of HCV binding to receptors and membrane fusion, underlining its potential as an antiviral target.


Assuntos
Hepacivirus/metabolismo , Hepatite C/virologia , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Animais , Carcinoma Hepatocelular , Claudina-1/metabolismo , Dimerização , Células HEK293 , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Humanos , Neoplasias Hepáticas , Fusão de Membrana/fisiologia , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Receptores Depuradores Classe B/metabolismo , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
4.
J Virol ; 86(17): 9015-24, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22674991

RESUMO

Bluetongue virus (BTV) is the etiological agent of bluetongue (BT), a hemorrhagic disease of ruminants that can cause high levels of morbidity and mortality. BTV is an arbovirus transmitted between its ruminant hosts by Culicoides biting midges (Diptera: Ceratopogonidae). Recently, Europe has experienced some of the largest BT outbreaks ever recorded, including areas with no known history of the disease, leading to unprecedented economic and animal welfare issues. The current lack of genomic resources and genetic tools for Culicoides restricts any detailed study of the mechanisms involved in the virus-insect interactions. In contrast, the genome of the fruit fly (Drosophila melanogaster) has been successfully sequenced, and it is used extensively as a model of molecular pathways due to the existence of powerful genetic technology. In this study, D. melanogaster is investigated as a model for the replication and tropism of BTV. Using reverse genetics, a modified BTV-1 that expresses the fluorescent mCherry protein fused to the viral nonstructural protein NS3 (BTV-1/NS3mCherry) was generated. We demonstrate that BTV-1/NS3mCherry is not only replication competent as it retains many characteristics of the wild-type virus but also replicates efficiently in D. melanogaster after removal of the bacterial endosymbiont Wolbachia pipientis by antibiotic treatment. Furthermore, confocal microscopy shows that the tissue tropism of BTV-1/NS3mCherry in D. melanogaster resembles that described previously for BTV in Culicoides. Overall, the data presented in this study demonstrate the feasibility of using D. melanogaster as a genetic model to investigate BTV-insect interactions that cannot be otherwise addressed in vector species.


Assuntos
Vírus Bluetongue/fisiologia , Bluetongue/virologia , Doenças dos Bovinos/virologia , Modelos Animais de Doenças , Drosophila melanogaster/virologia , Tropismo Viral , Replicação Viral , Animais , Vírus Bluetongue/genética , Bovinos , Linhagem Celular , Ceratopogonidae/virologia , Drosophila melanogaster/genética , Insetos Vetores/virologia
5.
J Biol Chem ; 286(27): 23865-76, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21555519

RESUMO

Several conserved domains critical for E1E2 assembly and hepatitis C virus entry have been identified in E1 and E2 envelope glycoproteins. However, the role of less conserved domains involved in cross-talk between either glycoprotein must be defined to fully understand how E1E2 undergoes conformational changes during cell entry. To characterize such domains and to identify their functional partners, we analyzed a set of intergenotypic E1E2 heterodimers derived from E1 and E2 of different genotypes. The infectivity of virions indicated that Con1 E1 did not form functional heterodimers when associated with E2 from H77. Biochemical analyses demonstrated that the reduced infectivity was not related to alteration of conformation and incorporation of Con1 E1/H77 E2 heterodimers but rather to cell entry defects. Thus, we generated chimeric E1E2 glycoproteins by exchanging different domains of each protein in order to restore functional heterodimers. We found that both the ectodomain and transmembrane domain of E1 influenced infectivity. Site-directed mutagenesis highlighted the role of amino acids 359, 373, and 375 in transmembrane domain in entry. In addition, we identified one domain involved in entry within the N-terminal part of E1, and we isolated a motif at position 219 that is critical for H77 function. Interestingly, using additional chimeric E1E2 complexes harboring substitutions in this motif, we found that the transmembrane domain of E1 acts as a partner of this motif. Therefore, we characterized domains of E1 and E2 that have co-evolved inside a given genotype to optimize their interactions and allow efficient entry.


Assuntos
Hepacivirus/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Motivos de Aminoácidos , Linhagem Celular , Hepacivirus/genética , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/genética
6.
J Biol Chem ; 283(39): 26340-8, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18667425

RESUMO

Disulfide bonding contributes to the function and antigenicity of many viral envelope glycoproteins. We assessed here its significance for the hepatitis C virus E2 envelope protein and a counterpart deleted for hypervariable region-1 (HVR1). All 18 cysteine residues of the antigens were involved in disulfides. Chemical reduction of up to half of these disulfides was compatible with anti-E2 monoclonal antibody reaction, CD81 receptor binding, and viral entry, whereas complete reduction abrogated these properties. The addition of 5,5'-dithiobis-2-nitrobenzoic acid had no effect on viral entry. Thus, E2 function is only weakly dependent on its redox status, and cell entry does not require redox catalysts, in contrast to a number of enveloped viruses. Because E2 is a major neutralizing antibody target, we examined the effect of disulfide bonding on E2 antigenicity. We show that reduction of three disulfides, as well as deletion of HVR1, improved antibody binding for half of the patient sera tested, whereas it had no effect on the remainder. Small scale immunization of mice with reduced E2 antigens greatly improved serum reactivity with reduced forms of E2 when compared with immunization using native E2, whereas deletion of HVR1 only marginally affected the ability of the serum to bind the redox intermediates. Immunization with reduced E2 also showed an improved neutralizing antibody response, suggesting that potential epitopes are masked on the disulfide-bonded antigen and that mild reduction may increase the breadth of the antibody response. Although E2 function is surprisingly independent of its redox status, its disulfide bonds mask antigenic domains. E2 redox manipulation may contribute to improved vaccine design.


Assuntos
Anticorpos Antivirais/imunologia , Hepacivirus/imunologia , Antígenos da Hepatite C/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/metabolismo , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos CD/metabolismo , Linhagem Celular , Dissulfetos/química , Dissulfetos/imunologia , Dissulfetos/metabolismo , Ácido Ditionitrobenzoico/química , Hepacivirus/química , Hepacivirus/genética , Hepacivirus/metabolismo , Antígenos da Hepatite C/química , Antígenos da Hepatite C/genética , Antígenos da Hepatite C/metabolismo , Antígenos da Hepatite C/farmacologia , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Estrutura Terciária de Proteína/genética , Deleção de Sequência , Reagentes de Sulfidrila/química , Tetraspanina 28 , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/farmacologia , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/metabolismo , Vacinas contra Hepatite Viral/farmacologia , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...